Abstract
Mutations in BEST1, encoding bestrophin-1 (Best1), cause Best vitelliform macular dystrophy (BVMD), a dominantly inherited macular degeneration characterized by a diminished electrooculogram light peak (LP), lipofuscin in retinal pigment epithelial cells (RPE), and fluid- and debris-filled retinal detachments. To understand the pathogenesis of BVMD we generated knock-in mice carrying the BVMD-causing mutation W93C in Best1. Both Best1(+/W93C)and Best1(W93C/W93C) mice had normal ERG a- and b-waves, but exhibited an altered LP luminance response reminiscent of that observed in BVMD patients. Morphological analysis identified fluid- and debris-filled retinal detachments in mice as young as 6 months of age. By 18-24 months of age Best1(+/W93C)and Best1(W93C/W93C) mice exhibited enhanced accumulation of lipofuscin in the RPE, and a significant deposition of debris composed of unphagocytosed photoreceptor outer segments and lipofuscin granules in the subretinal space. Although Best1 is thought to function as a Ca(2+)-activated Cl(-) channel, RPE cells from Best1(W93C) mice exhibited normal Cl(-) conductances. We have previously shown that Best1(-/-) mice exhibit increased [Ca(2+)](i) in response to ATP stimulation. However, ATP-stimulated changes in [Ca(2+)](i) in RPE cells from Best1(+/W93C) and Best1(W93C/W93C) mice were suppressed relative to Best1(+/+) littermates. Based on these data we conclude that mice carrying the Best1(W93C) mutation are a valid model for BVMD. Furthermore, these data suggest that BVMD is not because of Best1 deficiency, as the phenotypes of Best1(+/W93C) and Best1(W93C/W93C) mice are distinct from that of Best1(-/-) mice with regard to lipofuscin accumulation, and changes in the LP and ATP Ca(2+) responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.