Abstract

This paper reports the use of amorphous/polysilicon gate electrode in BF/sub 2/-implanted poly-gated P-MOSFETs to suppress the boron penetration. SIMS analysis clearly illustrates that fluorine prefers to accumulate in the layer of amorphous silicon. The retardation of boron diffusion is therefore achieved by the trapping of fluorine in the amorphous layer of stacked amorphous/polysilicon (SAP) p-type gate due to a lower diffusion rate of fluorine in the amorphous silicon layer. Polysilicon depletion effect did not become more severe by introducing the amorphous silicon. In addition, gate oxide reliability is not degraded by using this gate structure. Results show that the structure is a promising gate electrode for future dual-poly gate CMOS technology development.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.