Abstract

We developed the Stem Cell Educator therapy among multiple clinical trials based on the immune modulations of multipotent cord blood-derived stem cells (CB-SCs) on different compartments of immune cells, such as T cells and monocytes/macrophages, in type 1 diabetes and other autoimmune diseases. However, the effects of CB-SCs on the B cells remained unclear. To better understand the molecular mechanisms underlying the immune education of CB-SCs, we explored the modulations of CB-SCs on human B cells. CB-SCs were isolated from human cord blood units and confirmed by flow cytometry with different markers for their purity. B cells were purified by using anti-CD19 immunomagnetic beads from human peripheral blood mononuclear cells (PBMCs). Next, the activated B cells were treated in the presence or absence of coculture with CB-SCs for 7 days before undergoing flow cytometry analysis of phenotypic changes with different markers. Reverse transcription-polymerase chain reaction (RT-PCR) was utilized to evaluate the levels of galectin expressions on CB-SCs with or without treatment of activated B cells in order to find the key galectin that was contributing to the B-cell modulation. Flow cytometry demonstrated that the proliferation of activated B cells was markedly suppressed in the presence of CB-SCs, leading to the downregulation of immunoglobulin production from the activated B cells. Phenotypic analysis revealed that treatment with CB-SCs increased the percentage of IgD+CD27- naïve B cells, but decreased the percentage of IgD-CD27+ switched B cells. The transwell assay showed that the immune suppression of CB-SCs on B cells was dependent on the galectin-9 molecule, as confirmed by the blocking experiment with the anti-galectin-9 monoclonal antibody. Mechanistic studies demonstrated that both calcium levels of cytoplasm and mitochondria were downregulated after the treatment with CB-SCs, causing the decline in mitochondrial membrane potential in the activated B cells. Western blot exhibited that the levels of phosphorylated Akt and Erk1/2 signaling proteins in the activated B cells were also markedly reduced in the presence of CB-SCs. CB-SCs displayed multiple immune modulations on B cells through the galectin-9-mediated mechanism and calcium flux/Akt/Erk1/2 signaling pathways. The data advance our current understanding of the molecular mechanisms underlying the Stem Cell Educator therapy to treat autoimmune diseases in clinics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.