Abstract

It is well established that axons of the adult mammalian CNS are capable of regrowing only a limited amount after injury. Astrocytes are believed to play a crucial role in the failure to regenerate, producing multiple inhibitory proteoglycans, such as chondroitin sulphate proteoglycans (CSPGs). After spinal cord injury (SCI), astrocytes become hypertrophic and proliferative and form a dense network of astroglial processes at the site of lesion constituting a physical and biochemical barrier. Down-regulations of astroglial proliferation and inhibitory CSPG production might facilitate axonal regeneration. Recent reports indicated that aberrant activation of cell cycle machinery contributed to overproliferation and apoptosis of cells in various insults. In the present study, we sought to determine whether a cell cycle inhibitior, olomoucine, would decrease neuronal cell death, limit astroglial proliferation and production of inhibitory CSPGs, and eventually enhance the functional compensation after SCI in rats. Our results showed that up-regulations of cell cycle components were closely associated with neuronal cell death and astroglial proliferation as well as the production of CSPGs after SCI. Meanwhile, administration of olomoucine, a selective cell cycle kinase (CDK) inhibitor, has remarkably reduced the up-regulated cell cycle proteins and then decreased neuronal cell death, astroglial proliferation, and accumulation of CSPGs. More importantly, the treatment with olomoucine has also increased expression of growth-associated proteins-43, reduced cavity formation, and improved functional deficits. We consider that suppressing astroglial cell cycle in acute SCIs is beneficial to axonal growth. In the future, therapeutic strategies can be designed to achieve efficient axonal regeneration and functional compensation after traumatic CNS injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.