Abstract
Global change alters how terrestrial ecosystems function and makes them less stable over time. Global change can also suppress the development and effectiveness of arbuscular mycorrhizal fungi (AMF). This is concerning, as AMF have been shown to alleviate the negative influence of global changes on plant growth and maintain species coexistence. However, how AMF and global change interact and influence community temporal stability remains poorly understood. Here, we conducted a 4-year field experiment and used structural equation modeling (SEM) to explore the influence of elevated temperature, nitrogen (N) addition and AMF suppression on community temporal stability (quantified as the ratio of the mean community productivity to its standard deviation) in a temperate meadow in northern China. We found that elevated temperature and AMF suppression independently decreased the community temporal stability but that N addition had no impact. Community temporal stability was mainly driven by elevated temperature, N addition and AMF suppression that modulated the dominant species stability; to a lesser extent by the elevated temperature and AMF suppression that modulated AMF richness associated with community asynchrony; and finally by the N addition and AMF suppression that modulated mycorrhizal colonization. In addition, although N addition, AMF suppression and elevated temperature plus AMF suppression reduced plant species richness, there was no evidence that changes in community temporal stability were linked to changes in plant richness. SEM further showed that elevated temperature, N addition and AMF suppression regulated community temporal stability by influencing both the temporal mean and variation in community productivity. Our results suggest that global environmental changes may have appreciable consequences for the stability of temperate meadows while also highlighting the role of belowground AMF status in the responses of plant community temporal stability to global change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.