Abstract

Hepatocellular carcinomas (HCCs) are tumors with a highly developed vascular architecture. HCC cells require access to blood vessels for growth and metastasis; therefore, the inhibition of angiogenesis represents a potential therapeutic target for HCC that may reduce the mortality and morbidity from HCC. Various attempts to develop an anti-angiogenic therapy have been made in past decades; however, modest results have been achieved in clinical trials and the challenge of HCC treatment remains. Single-chain antibodies (scFv) are characterized by low molecular weight, low immunogenicity, high penetration and a short half-life, and are easy to produce on a large scale by genetic engineering. Accordingly, an scFv against a specific angiogenic regulator, such as angiopoietin (Ang), may be a promising anti-angiogenic therapy for HCC. Our previous study indicated that an imbalanced expression of angiopoietin-2 (Ang-2) vs. angiopoietin-1 (Ang-1) in HCCs contributes to initiation of neovascularization and promotes the angiogenesis and progression of HCCs. Therefore, we suggest that specific Ang-2-targeting interventions may be valuable in the treatment of HCC via remodeling the neovascular network and changing the tumor microenvironment. In this study, a prokaryotic expression vector of Ang-2 was constructed and purified human Ang-2 protein was isolated. An scFv against human Ang-2 (scFv-Ang2) was identified and purified via phage display technology, and the effects of scFv-Ang2 in vitro and in vivo on HCC in nude mice were evaluated. The results show that scFv-Ang2 inhibits vascular endothelial growth factor (VEGF) and Ang-2 induces the proliferation, migration and tubule formation of human umbilical vein endothelial cells (HUVECs) in vitro. In the in vivo assay, statistical indices, including tumor weight and volume, metastases to lungs, CD31 expression and the microvessel density (MVD) count in the scFv-Ang2-treated group of mice were significantly lower than those in the control group (P<0.05). In conclusion, the successfully generated scFv-Ang2 showed significant inhibitory effects on the angiogenesis and tumor growth of human HCC in vitro and in vivo.

Highlights

  • Hepatocellular carcinoma (HCC) is one of the most malignant tumors in the tropics and the Far East, including China

  • Recombinant plasmid pET32c-Ang‐2 was transformed into Escherichia coli BL21 and was strongly expressed following isopropyl β-D-1-thiogalactopyranoside (IPTG) induction at 15 ̊C

  • It was reported that normal regulation of tyrosine kinase Tie2 is required for normal vascular development, by regulating vascular remodeling and maturation [31]

Read more

Summary

Introduction

Hepatocellular carcinoma (HCC) is one of the most malignant tumors in the tropics and the Far East, including China. It is the fourth most common cause of cancer and accounts for 53% of liver cancer mortalities worldwide [1]. Vascular endothelial growth factor (VEGF) is a key factor in tumor angiogenesis and high levels of VEGF have been identified to be a determining factor in the HCC grade, clinically correlating with low rates of overall survival [4,5,6].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call