Abstract

Due to the complexity of the vacuum residue fraction of petroleum and bitumen, a model compound was used to probe cracking and addition reactions in the liquid phase. Hydrogenation reactions were conducted in a batch microreactor at 430 °C, 13.9 MPa H2 for 30 min using a solution of 1,3,6,8-tetrahexylpyrene (THP) in tetralin. Sulfided iron was prepared on α-alumina, γ-alumina, and glass beads as support materials. The hypothesis of this study was that addition reactions can be suppressed under hydrogenation conditions by using iron sulfide as a low-activity catalyst in the presence of hydrogen gas and a hydrogen donor solvent, by saturating olefin intermediates. The products were analyzed by high performance liquid chromatography, gas chromatography, matrix-assisted laser desorption ionization mass spectrometry, and proton nuclear magnetic resonance spectroscopy to investigate conversion and product distribution for different catalysts and without added catalyst. The results show that sulfided iron can gi...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.