Abstract

Accelerated electrons, which would lead to high thermal load of grids, have been suppressed in a high-current large hydrogen negative ion source. An extraction grid, with apertures shaped as the secondary electrons generated on the grid aperture surface would be shielded against the acceleration electric field, works well to prevent the secondary electrons from leaking to the acceleration gap, compared with a straight aperture extraction grid. Although the strong magnetic field at the extraction grid also lowers the electron leakage downstream, the aperture shaping of the extraction grid is more effective for the suppression of the accelerated electrons. The acceleration efficiency, defined by the ratio of the negative-ion current to the acceleration drain current, is improved to around 85%. There remains the accelerated electrons generated in the negative ion neutralization by collision with the residual neutral molecules during the acceleration. The direct interception of the accelerated negative ions with the downstream grid is small. The reduction of the operational gas pressure is quite important to achieve further improvement of the acceleration efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call