Abstract
Dietary calcium is believed to reduce colon cancer risk, but the mechanism by which this occurs is poorly understood. Employing the Citrobacter rodentium-induced transmissible murine colonic hyperplasia (TMCH) model, we previously showed that a high-calcium diet (hCa) significantly abrogated hyperplasia in the distal colons of NIH-Swiss mice. Here, we explored the mechanism of dietary protection by hCa by analyzing the expression of genes involved in the regulation of Ca uptake/flux in the intestinal epithelium, including the Ca-sensing receptor, vitamin D receptor, Ca binding protein, and transient receptor potential cation channels, subfamily V, members 5 and 6 (TRPV5/6). Interestingly, while TRPV6 expression increased significantly during TMCH, the expression of the other gene products was unchanged. This elevated TRPV6 expression was significantly abrogated by a hCa diet. Immunofluorescence revealed apical membrane localization of TRPV6 in the normal colon, whereas during TMCH we observed intense apical pole and cytoplasmic staining along the entire longitudinal crypt axis, including the expanded proliferating zone. The hCa diet reversed this effect. In humans, overexpression of TRPV6 was associated with early-stage colon cancer, and in colon carcinoma cells, inhibition of TRPV6 expression by small interfering RNA inhibited their proliferation and induced apoptosis. TRPV6 small interfering RNA also diminished the transcriptional activity of the calcium-dependent nuclear factors in activated T cells. Thus the aberrant overexpression of TRPV6 contributes to colonic crypt hyperplasia in mice and to colon cancer cell proliferation in humans. Therefore, it is likely that suppression of TRPV6 by a hCa diet is required for its protective effects in the colon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Gastrointestinal and liver physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.