Abstract

Synchronization of a self-excited dust density wave has been experimentally investigated in a strongly coupled dusty plasma. A dust density wave of frequency ∼78 Hz is spontaneously generated from the dust void boundary due to the ion streaming instability. The electric field in the dust void region is measured, and the electric field force and ion drag force on the dust particles at the void boundary are estimated to explain the mechanism of spontaneous dust density wave excitation. Synchronization occurring through the suppression mechanism is observed by modulating the ion streaming by applying an external sinusoidal signal to the dust void. At sufficiently high modulation amplitude, the onset of period-doubling bifurcation is observed. Fast Fourier transform spectral analysis is done using time-series data obtained from high-speed video imaging. The van der Pol equation with a force term is used to correlate the observed suppression phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.