Abstract

Sugars are the key regulatory molecules that impact diverse biological processes in plants. Hexokinase, the key rate-limiting enzyme in hexose metabolism, takes part in the first step of glycolytic pathway. Acting as a sensor that mediates sugar regulation, hexokinase has been proved to play significant roles in regulating plant growth and development. Here, we isolated a hexokinase gene SlHXK1 from tomato. Its transcript levels were higher in flowers and leaves than in other organs and decreased during leaf and petiole development. SlHXK1-RNAi lines displayed advanced leaf senescence and stunted plant growth. Physiological features including plant height, leaf length, thickness and size, the contents of chlorophyll, starch and MDA, and hexokinase activity were dramatically altered in SlHXK1-RNAi plants. Dark-induced leaf senescence were advanced and the transcripts of senescence-related genes after darkness treatment were markedly increased in SlHXK1-RNAi plants. RNA-seq and qRT-PCR analyses showed that the transcripts of genes related to plant hormones, photosynthesis, chloroplast development, chlorophyll synthesis and metabolism, cellular process, starch and sucrose metabolism, and senescence were significantly altered in SlHXK1-RNAi plants. Taken together, our data demonstrate that SlHXK1 is a significant gene involved in leaf senescence and plant growth and development in tomato through affecting starch turnover.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call