Abstract

The suppression efficiency of the correlated noise and drift of self-oscillating front-end circuit in a pseudo-differential eddy-current displacement sensor (ECDS) is investigated using COMSOL and MATLAB. The transfer characteristic of the sensor coil, excited at 200MHz, is obtained through a FE model in COMSOL. The characteristic is linearized to a second-order fit around a standoff distance to the target (xso) of 55μm. The nonlinearity of the interface is modelled in MATLAB. It is found that, in order to tolerate 1% drift in the oscillator amplitude, a maximum 2nd harmonic distortion (HD2) of the interface has to be less than −72dB when the sensor HD2 is −51.5dB for 5μm displacement range around xso = 55μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.