Abstract
Voltage decay during cycling is the major problem for lithium-rich layered oxide cathodes. Here, we designed Sb-doped lithium-rich layered oxides prepared by a coprecipitation-solvent thermal method, aiming to alleviate the voltage decay of lithium-rich layered oxides. The midpoint discharge voltage and specific capacity of Li1.20Ni0.133Co0.133Mn0.633Sb0.01O2 (LLMO-Sb1) demonstrate almost no decaying after 100 cycles at 1 C. Moreover, it exhibits a large rate capacity (215 mAh g-1 at 5 C). The suppressed voltage decay and enhanced cycle performance of Sb-doped material are attributed to the high Sb-O bond energy, which can enhance the stability of the layered structure and suppress the layered-to-spinel phase transition. Moreover, Sb doping improves the rate capacity by reducing the energy barrier of lithium ion diffusion. This work opens a gate to prevent the oxidation of superoxo and peroxo, stabilizing the layered structure by selecting an element with a suitable radius and electronegativity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.