Abstract
Xyloglucan is a key polymer in the walls of growing plant cells. Using split pea stem segments and stem segments from which the epidermis had been peeled off, we demonstrate that the integration of xyloglucan mediated by the action of wall-bound xyloglucan endotransglycosylase suppressed cell elongation, whereas that of its fragment oligosaccharide accelerated it. Whole xyloglucan was incorporated into the cell wall and induced the rearrangement of cortical microtubules from transverse to longitudinal; in contrast, the oligosaccharide solubilized xyloglucan from the cell wall and maintained the microtubules in a transverse orientation. This paper proposes that xyloglucan metabolism controls the elongation of plant cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.