Abstract

Power electronics devices are made from semiconductor switches such as thyristors, MOSFETs, and diodes, along with passive elements of inductors, capacitors, and resistors, and integrated circuits. They are heavily used in power processing for applications in computing, communication, medical electronics, appliance control, and as converters in high power DC and AC transmission in what is now called harmonized AC/DC networks. A converter’s operation is described as a periodic sequencing of different modes of operation corresponding to different topologies interfaced to filters made of passive elements. The performance of converters has improved considerably using high switching frequency, which leads to a significant improvement in a power converter’s performance. However, the high dv/dt through a fast-switching transient of the MOSFET is associated with parasitic components generating oscillations and voltage spikes having adverse effects on the operation of complementary switches, thereby affecting the safe operation of the power devices. In this paper, the MOSFET gate-driver circuit performance is improved to suppress the H-Bridge inverter’s voltage spikes. The proposed technique is a simple improvement to the gate driver based on the IR2112 driver (IC) by adding a capacitor to attenuate the effect of parasitic components and the freewheeling current, suppressing the negative voltage spikes. This paper’s main contribution is to improve the gate driver circuit’s capability for suppressing the voltage spikes in the H-Bridge inverter. The improved gate driver circuit is validated experimentally and is compared with the conventional gate driver. The experimental results show that the proposed technique can effectively suppress the MOSFET’s voltage spikes and oscillations.

Highlights

  • Producing high-quality output waveforms from Multilevel Inverter (MLI) has been challenging for researchers working in the area

  • H-Bridge inverters have suffered from voltage spikes in their output signals

  • This paper presents a new design to suppress the voltage spikes by improving the MOSFET gate driver circuit in the H-Bridge circuit based on the integrated circuit IR2112

Read more

Summary

Introduction

Producing high-quality output waveforms from Multilevel Inverter (MLI) has been challenging for researchers working in the area. The high-quality output results from reduced switching losses in the power semiconductors and for improving output waveform [1,2,3,4]. H-Bridge inverters have suffered from voltage spikes in their output signals. These spikes have undesirable effects such as phonetic noise and harmonic heating losses, semiconductors switching power losses, and mechanical vibrations [5,6]. The parasitic inductance can boost the voltage overshoot, leading to total harmonic distortion. It is important to eliminate the parasitic resonance to improve the H-Bridge converter’s performance and mitigate the effect of the total harmonic distortion [7]. A root locus technique has been used with an RC snubber circuit design in Reference [8] for a double pulse circuit of the

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call