Abstract

Synthesizing nanocarriers with stealth properties and delivering a "payload" to the particular organ remains a big challenge but is the prime prerequisite for any in vivo application. As a nontoxic alternative to the modification by poly(ethylene glycol) PEG, we describe the synthesis of cross-linked hydroxyethyl starch (HES, M(w) 200,000 g/mol) nanocapsules with a size range of 170-300 nm, which do not show nonspecific uptake into cells. The specific uptake was shown by coupling a folic acid conjugate as a model targeting agent onto the surface of the nanocapsules, because folic acid has a high affinity to a variety of human carcinoma cell lines which overexpress the folate receptor on the cell surface. The covalent binding of the folic acid conjugate onto HES capsules was confirmed by FTIR and NMR spectroscopy. The coupling efficiency was determined using fluorescence spectroscopy. The specific cellular uptake of the HES nanocapsules after folic acid coupling into the folate-receptor presenting cells was studied by confocal laser scanning microscopy (CLSM) and flow cytometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call