Abstract

Creep rupture strength at 923 K and microstructural evolution of welded joints have been investigated for high boron–low nitrogen–9Cr heat resistant steels developed at the National Institute for Materials Science (Japan). Welded joints were prepared from plates containing 47–180 ppm boron using gas tungsten arc welding and Inconel type filler metal, and showed superior creep properties to those of welded joints of conventional high chromium steels such as P92 and P122. No type IV failure was observed in the boron steel welded joints. A large grained microstructure was observed in the heat affected zone heated to Ac3 (Ac3 HAZ) during welding, whereas the grains are refined at the same location in conventional steel welded joints. The simulated Ac3 HAZ structures of the boron steels have a creep life almost equal to that of the base metal. Large grained HAZ microstructures and stabilisation of M23C6 precipitates are probable reasons for suppression of type IV failure and improved creep resistance of the boron steel welded joints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.