Abstract
Triboelectric nanogenerators (TENGs) are newly developed energy-harvesting mechanisms, which can efficiently transmute irregular mechanical energy into scarce electrical energy. However, the electrical performance of TENGs shows a decreasing tendency with the increase in temperature, and the negative effect caused by friction heat and operating environmental thermal stresses for the output performance, durability, and reliability are still a bottleneck, restricting the practical application of TENG electronic devices. Especially for wearable TENG devices, the heat-induced temperature rise evokes extreme discomfort and even hazards to human health. To effectively suppress the thermal negative effect and maintain the high-temperature steady electrical performance of TENGs, a novel thermo-regulating TENG (Tr-TENG) based on phase change materials (PCMs) is designed. The results state clearly that the Tr-TENG can maintain steady output performance without deterioration by the introduction of PCMs, during continuous heating and natural cooling, while the output performance of conventional TENG is decayed by 18.33%. More importantly, the Tr-TENG possesses high-efficiency thermal management ability, resulting in its improved durability, reliability, and thermal comfort. This study creates new possibilities for the development of advanced multifunctional TENGs with attractive characteristics and desirable performances and promotes the application of TENG electronic devices in harsh environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.