Abstract
In this work, we present a novel small molecule based on dithienylthienothiadiazole units (named SM1) acting as an efficient component in ternary blend organic solar cells to modify the hole extraction at the interface. Our findings show that the SM1 suppresses the surface recombination and enhances the open-circuit voltage ( Voc). By introducing SM1 in a host system composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl- C61-butyric acid methyl ester (PCBM), we obtained Voc values of up to 0.75 V and fill factors larger than 70% for the ternary blends. As a consequence, the power conversion efficiency is improved by about 30% compared to P3HT:PCBM binary devices. Interestingly, external quantum efficiency and absorption spectra in the near-infrared region do not show any contribution of SM1 in dried films. Instead, the addition of the small molecule improves the Voc by reducing the surface recombination losses. To shed light on the recombination processes, we carried out Fourier-transform photocurrent spectroscopy and impedance spectroscopy measurements. This work shows that the ternary concept can also have functionalities other than photosensitization and can even act as a morphology-directing agent or an interface modifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.