Abstract

The ring stain phenomenon is a critical hindrance to the distribution of the solute during drying for biochemical assays and materials deposition. Herein, we developed a substrate, characterized with hydrophilic spots surrounded by hydrophobic areas, to suppress the ring stain effect, and fabricated four kinds of patterned surfaces to investigate the relationship between the surface free energy and ring-suppressing performance. We found that during the evaporation process, a drop was constrained on the hydrophilic spot with a pinned contact line, and the ring stain effect was suppressed significantly. The suppressing performance of the ring stain effect increases with surface free energy differences between the hydrophilic and hydrophobic regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.