Abstract

Intrinsic photobleaching and photoluminescence (PL) intermittency of single quantum dots (QDs), originating from photo-oxidation and photo-ionization respectively, are roadblocks for most single-dot applications. Here, we effectively suppress the photobleaching and the PL intermittency of single near-infrared emitting QDs with p-phenylenediamine (PPD). The PPD cannot only be used as a high-efficient reducing agent to remove reactive oxygen species around QDs to suppress the photo-oxidation, but can also bond with the surface defect sites of single QDs to reduce electron trap states to suppress the photo-ionization. It is shown that the survival time of single QDs, the on-state probability of PL intensity traces, and the total number of emitted photons are significantly increased for single QDs in PPD compared with that on glass coverslip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call