Abstract
The formation of topological defects in continuous phase transitions is driven by the Kibble-Zurek mechanism. Here we study the formation of single- and half-quantum vortices during transition to the polar phase of ^{3}He in the presence of a symmetry-breaking bias provided by the applied magnetic field. We find that vortex formation is suppressed exponentially when the length scale associated with the bias field becomes smaller than the Kibble-Zurek length. We thus demonstrate an experimentally feasible shortcut to adiabaticity-an important aspect for further understanding of phase transitions as well as for engineering applications such as quantum computers or simulators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.