Abstract
Dion–Jacobson (DJ)‐type quasi‐two‐dimensional perovskites exhibit improved stabilities than their 3D counterparts but meanwhile limited charge transport properties. Knowledge to manipulate the crystal orientation and crystallinity is the primary issue for DJ perovskite with high power conversion efficiencies (PCEs). Herein, the nucleation of DJ perovskite films is divided into three stages and the formation of PbI2–N,N‐dimethylformamide (DMF)‐based solvated phase (PDS) is highlighted as the initial stage. For the first time, it is demonstrated that regulating the amount of PDS precipitation in stage I by MACl additive is the key to ensure the downward growth of DJ perovskites with out‐of‐plane orientation and high crystallinity in stage III, which is valid for DJ perovskites with different bukly organic cations including p‐phenylenediamine (PPD), p‐xylylenediamine (PXD), and propane‐1,3‐diammonium (PDA). For (PXD)(MA)2Pb3I10‐based perovskite solar cells, the PDS engineering lead to a dramtically improved PCE from 1.2% to 15.6%. Moreover, based on temperature‐dependent ionic conductivity measurement, it is confirmed that the ion migration in DJ perovskite films is efficiently suppressed, despite the possible coexisting 3D perovskite phase. The unencapsulated PXD‐based DJ perovskite devices retain over 90% efficiencies after 700 h of continuous illumination or 1500 h of storage in glove box.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.