Abstract

Multi-core machines enable the possibility of parallel computing in Automatic Test Pattern Generation (ATPG). With sufficient computing power, previously proposed parallel ATPG has reached near linear speedup. However, test inflation in parallel ATPG yet arises as a critical problem and limits its practicality. Therefore, we developed a parallel ATPG system that incorporates (1) concurrent interruption (CI), (2) ripple compaction (RC) and (3) fan-in-cone based fault ordering (FIC) to deal with such problem. Concurrent interruption aborts test generation on simultaneously detected faults by fault simulation. Ripple compaction combines tests for different faults while fan-in-cone based fault ordering strategically arranges the fault list to reduce the number of test generations and thus speeds up the ATPG process. According to our experiments, the proposed parallel ATPG system effectively reduces 11% pattern count and achieves ~0% test inflation while maintaining an average of 6.5X speedup with no attenuation in fault coverage on experimental circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.