Abstract

It has been reported that cyclic stretch could induce inflammatory reaction in human periodontal ligament cells (HPDLCs). Though reactive oxygen species (ROS) has been reported to be involved in pathogen-induced periodontal inflammatory reaction, its role in the force-related periodontal diseases has not been well clarified. This study inspected the role of ROS in the cyclic stretch-induced inflammatory reaction in HPDLCs and studied the inhibitory effect of antioxidant apocynin on this inflammatory reaction. Results confirmed that cyclic stretch induced inflammatory reaction and production of ROS in HPDLCs. This inflammatory reaction was inhibited by apocynin through blocking the production of ROS. The cyclic stretch also induced the expression of caspase-1 and NLRP3 inflammasome, which could also be inhibited by apocynin. Moreover, the cyclic stretch-induced inflammatory reaction was inhibited by caspase-1 inhibitor. Collectively, it is the first time that increased intracellular ROS was proved to play as an intermediate signal in the cyclic stretch-induced inflammatory reaction in HPDLCs, via a caspase-1-dependent pathway. The inhibitory effect of apocynin on the cyclic stretch-induced inflammatory reaction in HPDLCs shows the potential of antioxidants in the treatment of force-related periodontal inflammatory diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call