Abstract

Water is necessary for the alkali aggregate reaction to occur and this study investigates the impact of waterproofing on alkali-aggregate reaction (AAR) in concrete by separating water from alkali reactive aggregates through surface, aggregate, and matrix treatments. Accelerated mortar bar tests (AMBT) are conducted to analyze the expansion caused by alkali aggregates. Furthermore, the suppressive mechanism of waterproofing on AAR is explored using scanning electron microscopy (SEM), while the influence of waterproof concrete aggregate and matrix on pore characteristics and hydration products is assessed using nuclear magnetic resonance (NMR) and X-ray diffraction (XRD). The results demonstrate that surface waterproofing with silane and polyvinyl alcohol (PVA) effectively suppress AAR. Moreover, PVA-coated aggregates significantly enhance the compactness of the interfacial transition zone (ITZ) in concrete. Based on these findings, an improved model considering waterproofness is proposed to quantify the degree of alkali aggregate reaction. These findings offer valuable guidance for controlling AAR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.