Abstract
AbstractThe governing equation of elasticity is discretized into motion equations of the particles in a Hamiltonian system. A weighted least‐square method is adopted to evaluate the Green–Lagrange strain. Using a symplectic scheme for the Hamiltonian system, we obtain the property of energy conservation in the discretized calculations. However, local particle oscillations occur, and they excessively decrease low frequency motion. In this study, we propose the use of an artificial potential force to suppress the local oscillations. The accuracy of the model with and without the inclusion of the artificial force is examined by analyzing a cantilever beam and wave propagation. With the inclusion of the artificial force, the local oscillations are reduced while energy conservation is maintained. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.