Abstract

AbstractLithium (Li) metal is one of the most promising candidates for the anode in high‐energy‐density batteries. However, Li dendrite growth induces a significant safety concerns in these batteries. Here, a multifunctional separator through coating a thin electronic conductive film on one side of the conventional polymer separator facing the Li anode is proposed for the purpose of Li dendrite suppression and cycling stability improvement. The ultrathin Cu film on one side of the polyethylene support serves as an additional conducting agent to facilitate electrochemical stripping/deposition of Li metal with less accumulation of electrically isolated or “dead” Li. Furthermore, its electrically conductive nature guides the backside plating of Li metal and modulates the Li deposition morphology via dendrite merging. In addition, metallic Cu film coating can also improve thermal stability of the separator and enhance the safety of the batteries. Due to its unique beneficial features, this separator enables stable cycling of Li metal anode with enhanced Coulombic efficiency during extended cycles in Li metal batteries and increases the lifetime of Li metal anode by preventing short‐circuit failures even under extensive Li metal deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call