Abstract
Mixed-halide perovskites (MHPs) have attracted attention as suitable wide-band-gap candidate materials for tandem applications owing to their facile band-gap tuning. However, when smaller bromide ions are incorporated into iodides to tune the band gap, photoinduced halide segregation occurs, which leads to voltage deficit and photoinstability. Here, we propose an original post-hot pressing (PHP) treatment that suppresses halide segregation in MHPs with a band gap of 2.0 eV. The PHP treatment reconstructs open-structured grain boundaries (GBs) as compact GBs through constrained grain growth in the in-plane direction, resulting in the inhibition of defect-mediated ion migration in GBs. The PHP-treated wide-band-gap (2.0 eV) MHP solar cells showed a high efficiency of over 11%, achieving an open-circuit voltage (Voc) of 1.35 V and improving the maintenance of the initial efficiency under the working condition at AM 1.5G. The results reveal that the management of GBs is necessary to secure the stability of wide-band-gap MHP devices in terms of halide segregation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.