Abstract

In the most efficient solar cells based on blends of a conjugated polymer (electron donor) and a fullerene derivative (electron acceptor),ultrafast formation of charge‐transfer (CT) electronic states at the donor‐acceptor interfaces and efficient separation of these CT states into free charges, lead to internal quantum efficiencies near 100%. However, there occur substantial energy losses due to the non‐radiative recombinations of the charges, mediated by the loweset‐energy (singlet and triplet) CT states; for example, such recombinations can lead to the formation of triplet excited electronic states on the polymer chains, which do not generate free charges. This issue remains a major factor limiting the power conversion efficiencies (PCE) of these devices. The recombination rates are, however, difficult to quantify experimentally. To shed light on these issues, here, an integrated multi‐scale theoretical approach that combines molecular dynamics simulations with quantum chemistry calculations is employed in order to establish the relationships among chemical structures, molecular packing, and non‐radiative recombination losses mediated by the lowest‐energy charge‐transfer states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.