Abstract

ABSTRACT Making cosmological inferences from the observed galaxy clustering requires accurate predictions for the mean clustering statistics and their covariances. Those are affected by cosmic variance – the statistical noise due to the finite number of harmonics. The cosmic variance can be suppressed by fixing the amplitudes of the harmonics instead of drawing them from a Gaussian distribution predicted by the inflation models. Initial realizations also can be generated in pairs with 180○ flipped phases to further reduce the variance. Here, we compare the consequences of using paired-and-fixed versus Gaussian initial conditions on the average dark matter clustering and covariance matrices predicted from N-body simulations. As in previous studies, we find no measurable differences between paired-and-fixed and Gaussian simulations for the average density distribution function, power spectrum, and bispectrum. Yet, the covariances from paired-and-fixed simulations are suppressed in a complicated scale- and redshift-dependent way. The situation is particularly problematic on the scales of Baryon acoustic oscillations where the covariance matrix of the power spectrum is lower by only $\sim 20{{\ \rm per\ cent}}$ compared to the Gaussian realizations, implying that there is not much of a reduction of the cosmic variance. The non-trivial suppression, combined with the fact that paired-and-fixed covariances are noisier than from Gaussian simulations, suggests that there is no path towards obtaining accurate covariance matrices from paired-and-fixed simulations – result, that is theoretically expected and accepted in the field. Because the covariances are crucial for the observational estimates of galaxy clustering statistics and cosmological parameters, paired-and-fixed simulations, though useful for some applications, cannot be used for the production of mock galaxy catalogues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.