Abstract
High atomic diffusivity in metals enables substantial tuneability of their structure and properties by tailoring the diffusional processes, but this causes their customized properties to be unstable at elevated temperatures. Eliminating diffusive interfaces by fabricating single crystals or heavily alloying helps to address this issue but does not inhibit atomic diffusion at high homologous temperatures. We discovered that the Schwarz crystal structure was effective at suppressing atomic diffusion in a supersaturated aluminum-magnesium alloy with extremely fine grains. By forming these stable structures, diffusion-controlled intermetallic precipitation from the nanosized grains and their coarsening were inhibited up to the equilibrium melting temperature, around which the apparent across-boundary diffusivity was reduced by about seven orders of magnitude. Developing advanced engineering alloys using the Schwarz crystal structure may lead to useful properties for high-temperature applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.