Abstract

Both the uncoordinated Pb2+ and excess PbI2 in perovskite film will create defects and perturb carrier collection, thus leading to the open-circuit voltage (VOC ) loss and inducing rapid performance degradation of perovskite solar cells (PSCs). Herein, an additive of 3-aminothiophene-2-carboxamide (3-AzTca) that contains amide and amino and features a large molecular size is introduced to improve the quality of perovskite film. The interplay of size effect and adequate bonding strength between 3-AzTca and uncoordinated Pb2+ regulates the mineralization of PbI2 and generates low-dimensional PbI2 phase, thereby boosting the crystallization of perovskite. The decreased defect states result in suppressed nonradiative recombination and reduced VOC loss. The power conversion efficiency (PCE) of modified PSC is improved to 22.79% with a high VOC of 1.22V. Moreover, the decomposition of PbI2 and perovskite films is also retarded, yielding enhanced device stability. This study provides an effective method to minimize the concentration of uncoordinated Pb2+ and improve the PCE and stability of PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.