Abstract
The cellular responses of mouse osteoblast-like MC3T3-E1 cells to the surface roughness were examined in the sequential events of cell adhesion, proliferation, differentiation, and mineralization. The cells were plated and cultured on sandblasted borosilicate glass slideslips with different surface roughnesses. DNA synthesis at day 1 after plating and the cell number at day 5 significantly decreased as the surface roughness increased. The suppressed cell proliferation on the rough-surfaced substrates, closely related to the round cell morphology, caused underdeveloped intercellular contacts via the gap junction due to the low population of neighboring cells. Expressions of the representative osteoblastic genes at day 14, alkaline phosphatase activity at day 21, and mineralization at day 28 were markedly reduced on the rough-surfaced substrates. These results clearly indicated that the reduced cell differentiation and mineralization resulted from the early cellular responses of the suppressed cell proliferation depending on the surface roughness and the consequent poor intercellular communication. The specific changes in the early gene expression profiles at day 1, depending on the surface roughness, were examined by a large-scale analysis of the gene expression using a mouse DNA chip. The ribosomal protein S6 kinase polypeptide 1 gene, which is a cell growth-related gene involved in the PI3-kinase/Akt pathway, was found to be the most down-regulated among the 4277 screened genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.