Abstract

Advancing lead halide perovskite solar cells to photovoltaic application requires reproducible and stable devices using low-cost fabricating techniques. Here a device structure is developed with organic network uniformly incorporated into the organic/inorganic hybrid perovskite film by one-step solution-processing strategy, which significantly improves the photovoltaic performance and long-term stability of planar type perovskite solar cells. The organic network is composed with PCBM and PEG. Therein, a long-chain insulating polymer PEG acts as a network to improve film morphology, as well as device stability. The fullerene derivative PCBM in the composite forms conducting channels to assist the charge transfer and transport in perovskite film. Besides, PCBM in perovskite film can passivate trap states on grain boundaries, so that the photocurrent hysteresis of the device is suppressed significantly. This organic composite network enhances the photovoltaic performance of perovskite solar cells with maximum power conversion efficiency of 17.1%, showing long duration at the maximum power point tracking up to ~170min. This low-cost organic network demonstrates a promising method for industry-scale fabrication of the organic/inorganic hybrid perovskite solar technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.