Abstract

I study a model for a massive one-dimensional particle in a singular periodic potential that is receiving kicks from a gas. The model is described by a Lindblad equation in which the Hamiltonian is a Schrödinger operator with a periodic δ-potential and the noise has a frictionless form arising in a Brownian limit. I prove that an emergent Markov process in an adiabatic limit governs the momentum distribution in the extended-zone scheme. The main result is a central limit theorem for a time integral of the momentum process, which is closely related to the particle’s position. When normalized by \(t^{\frac{5}{4}}\) the integral process converges to a time-changed Brownian motion whose diffusion rate depends on the momentum process. The scaling \(t^{\frac{5}{4}}\) contrasts with \(t^{\frac{3}{2}}\), which would be expected for the case of a smooth periodic potential or for a comparable classical process. The difference is a wave effect driven by momentum reflections that occur when the particle’s momentum is kicked near the half-spaced reciprocal lattice of the potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.