Abstract

p94/calpain 3 is a skeletal muscle-specific member of the Ca(2+)-regulated cytosolic cysteine protease family, the calpains. Defective p94 protease activity originating from gene mutations causes a muscular dystrophy called calpainopathy, indicating the indispensability of p94 for muscle survival. Because of the existence of the p94-specific regions IS1 and IS2, p94 undergoes very rapid and exhaustive autolysis. To elucidate the physiological relevance of this unique activity, the autolytic profiles of p94 and the effect of the p94 binding protein, connectin/titin, on this process were investigated. In vitro analysis of p94 autolysis showed that autolysis in IS1 proceeds without immediate disassembly into fragments and that the newly identified cryptic autolytic site in IS2 is critical for disassembling autolyzed fragments. As a genetic system to assay p94 autolysis semiquantitatively, p94 was expressed in yeast as a hybrid protein between the DNA binding and activation domains of the yeast transcriptional activator Gal4. Transcriptional activation by the Gal4-p94:WT hybrid protein is precluded by p94 autolysis. Complete or partial loss of autolytic activity by C129S active site mutation, limb girdle muscular dystrophy type 2A pathogenic missense mutations, or PCR-based random mutagenesis could be detected by semiquantitative restoration of Gal4-dependent beta-galactosidase gene expression. Using this system, the N2A connectin fragment that binds to p94 was shown to suppress p94 autolytic disassembly. The proximity of the IS2 autolytic and connectin-binding sites in p94 suggested that N2A connectin suppresses IS2 autolysis. These data indicate the importance of p94-connectin interaction in the control of p94 functions by regulating autolytic decay of p94.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.