Abstract

We experimentally investigate the dynamics of a persistent spin helix in etched GaAs wire structures of 2 to 80 um width. Using magneto-optical Kerr rotation with high spatial resolution, we determine the lifetime of the spin helix. A few nanoseconds after locally injecting spin polarization into the wire, the polarization is strongly enhanced as compared to the two-dimensional case. This is mostly attributed to a transition to one-dimensional diffusion, strongly suppressing diffusive dilution of spin polarization. The intrinsic lifetime of the helical mode is only weakly increased, which indicates that the channel confinement can only partially suppress the cubic Dresselhaus spin-orbit interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.