Abstract

Interfacial charge transfer is one of the most important fundamental steps in the charge and discharge processes of intercalation compounds for rechargeable batteries. In this study, temperature-dependent electrochemical impedance spectroscopy was carried out to clarify the origin of the high power output of aqueous batteries with Prussian blue analog electrodes. The activation energy for the interfacial charge transfer, Ea, was estimated from the temperature dependence of the interfacial charge transfer resistance. The Ea values with Li+ and Na+ aqueous electrolytes were considerably smaller than those with organic electrolytes. The small Ea values with aqueous electrolytes could result from the fact that the Coulombic repulsion at the interface is largely suppressed by the screening effect of hydration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.