Abstract

<h3>Abstract</h3> To identify <i>cis</i>-regulatory elements (CREs) and motifs of TF binding is an important step in understanding the regulatory functions of TF binding and gene expression. The lack of experimentally determined and computationally inferred data means that the genome-wide CREs and TF binding sites (TFBs) in filamentous fungi remain unknown. ATAC-seq is a technique that provides a high-resolution measurement of chromatin accessibility to Tn5 transposase integration. In filamentous fungi, the existence of cell walls and the difficulty in purifying nuclei have prevented the routine application of this technique. Herein, we modified the ATAC-seq protocol in filamentous fungi to identify and map open chromatin and TF-binding sites on a genome-scale. We applied the assay for ATAC-seq among different <i>Aspergillus</i> species, during different culture conditions, and among TF-deficient strains to delineate open chromatin regions and TFBs across each genome. The syntenic orthologues regions and differential changes regions of chromatin accessibility were responsible for functional conservative regulatory elements and differential gene expression in the <i>Aspergillus</i> genome respectively. Importantly, 17 and 15 novel transcription factor binding motifs that were enriched in the genomic footprints identified from ATAC-seq data of <i>A. niger</i>, were verified in vivo by our artificial synthetic minimal promoter system, respectively. Furthermore, we first confirmed the strand-specific patterns of Tn5 transposase around the binding sites of known TFs by comparing ATAC-seq data of TF-deficient strains with the data from a wild-type strain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call