Abstract
Speculative multithreading is a technique that has been used to improve single thread performance. Speculative multithreading architectures for Chip multiprocessors (CMPs) have been extensively studied. But there have been relatively few studies on the design of speculative multithreading for simultaneous multithreading (SMT) processors. The current SMT based designs – IMT [9] and DMT [2] use load/store queue (LSQ) to perform dependence checking. Since the size of the LSQ is limited, this design is suitable only for small threads. In this paper we present a novel cache-based architecture support for speculative simultaneous multithreading which can efficiently handle larger threads. In our architecture, the associativity in the cache is used to buffer speculative values. Our 4-thread architecture can achieve about 15% speedup when compared to the equivalent superscalar processors and about 3% speedup on the average over the LSQ-based architectures, however, with a less complex hardware. Also our scheme can perform 14% better than the LSQ-based scheme for larger threads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.