Abstract
AbstractIn cluster computing, InfiniBand has emerged as a popular high performance interconnect with MPI as the de facto programming model. However, even with InfiniBand, bandwidth can become a bottleneck for clusters executing communication intensive applications. Multi-rail cluster configurations with MPI-1 are being proposed to alleviate this problem. Recently, MPI-2 with support for one-sided communication is gaining significance. In this paper, we take the challenge of designing high performance MPI-2 one-sided communication on multi-rail InfiniBand clusters. We propose a unified MPI-2 design for different configurations of multi-rail networks (multiple ports, multiple HCAs and combinations). We present various issues associated with one-sided communication such as multiple synchronization messages, scheduling of RDMA (Read, Write) operations, ordering relaxation and discuss their implications on our design. Our performance results show that multi-rail networks can significantly improve MPI-2 one-sided communication performance. Using PCI-Express with two-ports, we can achieve a peak MPI_Put bidirectional bandwidth of 2620 Million Bytes/s, compared to 1910 MB/s for single-rail implementation. For PCI-X with two HCAs, we can almost double the throughput and reduce the latency to half for large messages.KeywordsMessage Passing InterfaceVirtual ChannelMessage SizeLarge MessageSmall MessageThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.