Abstract

Peer-to-peer systems have been widely used for sharing and exchanging data and resources among numerous computer nodes. Various data objects identifiable with high dimensional feature vectors, such as text, images, genome sequences, are starting to leverage P2P technology. Most of the existing works have been focusing on queries on data objects with one or few attributes and thus are not applicable on high dimensional data objects. In this study, we investigate K nearest neighbors query (KNN) on high dimensional data objects in P2P systems. Efficient query algorithm and solutions that address various technical challenges raised by high dimensionality, such as search space resolution and incremental search space refinement, are proposed. An extensive simulation using both synthetic and real data sets demonstrates that our proposal efficiently supports KNN query on high dimensional data in P2P systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.