Abstract
The advent of new satellite and data processing techniques have meant that routine, operational and reliable surveys of land motion on a regional and national scale are now possible. In this paper, we apply a novel satellite remote sensing technique, the Intermittent Small Baseline Subset method, to data from a new satellite mission, Sentinel-1, and demonstrate that a wide area map of ground deformation can be generated that supports the regulation of a range of energy-related activities. The area for the demonstration is mainland Scotland (∼75,000 km2) and the land motion map required the processing of some 627 images acquired from March 2015 to April 2017. The results show that land motion is encountered almost everywhere across Scotland, dominated by subsidence over peatland areas. However, many other phenomena are also encountered including landslides and deformation associated with mining and civil engineering activities. Considering specifically Petroleum Exploration and Development Licence areas offered under the 14th Onshore Licensing Round in the UK, examples of the types of land motion are shown, including an example related to soil restoration by a wind farm. It is demonstrated that, in Scotland at least, almost all licence areas contain deformation of one form or another and, furthermore, the causes of that subsidence are dynamic and likely to be changing from year-to-year. Therefore, maps like this are likely to be of enormous use in a regulatory framework to scope out pre-existing problems in a licence area and to ensure that the correct monitoring framework is put in place once activities begin. They can also provide evidence of good practice and give assurance against litigation by third parties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.