Abstract
An electrooxidative C-H functionalization is a widely accepted route to obtain sulfur-containing arenes and heteroarenes. However, this process often involves using non-recyclable supporting electrolytes, (co)solvents like hexafluoroisopropanol, additives like acid, or catalysts. The use of additional reagents can increase costs and waste, reducing atom efficiency. Moreover, unlike other nitrogen-containing heterocycles, there have only been sporadic reports of electrochemical C-H functionalization in fused pyrimidin-4-ones, and an electrolyte-free process has yet to be developed. This work demonstrates that such anodic coupling reactions can be performed in an all-green electrolytic system without using such additional electrolytes or HFIP, maintaining a high atom economy. This C-H functionalization strategy utilizes inexpensive sodium sulfinates and ammonium thiocyanate as sulfonylating and thiocyanating agents in an undivided cell at a constant current, using a mixture of CH3 CN/H2 O as solvent at room temperature. Thus, fused pyrimidin-4-ones can be selectively converted into C3-sulfonylated and -thiocyanated derivatives in moderate to good yields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.