Abstract

AbstractCoronary artery disease is one of its most important causes of early mortality in western world. Therefore, clinicians seek to improve diagnostic procedures in order to reach reliable early diagnoses. In the clinical setting, coronary artery disease diagnostics is often performed in a sequential manner, where the four diagnostic steps typically consist of evaluation of (1) signs and symptoms of the disease and electrocardiogram (ECG) at rest, (2) sequential ECG testing during the controlled exercise, (3) myocardial perfusion scintigraphy, and (4) finally coronary angiography, that is considered as the “gold standard” reference method. Our study focuses on improving diagnostic and probabilistic interpretation of scintigraphic images obtained from the penultimate step. We use automatic image parameterization on multiple resolutions, based on spatial association rules. Extracted image parameters are combined into more informative composite parameters by means of principle component analysis, and finally used to build automatic classifiers with neural networks and naive Bayes learning methods. Experiments show that our approach significantly increases diagnostic accuracy, specificity and sensitivity with respect to clinical results.Keywordsmulti-layered perceptronradial basis function networkcoronary artery diseasemedical diagnosticsexplanation

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.