Abstract

The main object of this research is the modification of an industrial hydrogen production unit with palladium-based membrane modules to produce extra-pure hydrogen and shift reactions toward the hydrogen production side. The considered hydrogen production unit includes steam reformer, high and low temperature shift converters, carbon dioxide absorption tower, and methanator. The membrane modules are applied in the catalytic reactors and hydrogen is simultaneously penetrated from the reaction zone toward the sweep gas. In the first step, both conventional and membrane-supported processes are heterogeneously models based on the mass and energy balance equations at steady state condition. Then, the simulation results of conventional process are compared with the plant data to prove the validity of the developed model. Finally, the simulation results of conventional and membrane-supported processes are compared under the same operating condition. In general, applying the membrane module on the system increases hydrogen production rate from 63.95 to 67.21 mole s-1. Based on the simulation results, supporting the conventional with the membrane module increases hydrogen production rate by 5.1%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call