Abstract

The photocatalytic property of available semiconductor catalysts still suffers from some urgent problems, such as the high excitation energy, easy agglomeration of powders, or weak recycling property. Therefore, developing novel visible light-supported catalysts and catalyst loading have aroused great attention recently. In this work, a novel Ag3PO4/BiVO4/MWCNTs@Cotton functional fabric was prepared by introducing Ag3PO4 as a plasma resonance photocatalyst and MWCNTs with cotton as composite substrates. Not only did the introduction of Ag3PO4 and MWCNTs effectively strengthen the application ability of BiVO4, but also inhibited the recombination of carriers, and promoted the transport of carriers according to spectroscopic and electrochemical tests. Degradation tests remained that Ag3PO4/BiVO4/MWCNTs @cotton retained the high photocatalytic efficiency of the powder catalyst, along with the degradation degree of active blue KN-R (50mg/L) as well as Cr (VI) (20mg/L) could reach more than 90% within 120 min. What's more, the functional fabric has gained excellent performance in degrading pollutants for 5 cycles. Meanwhile, the prepared BiVO4 is consistent with the band structure and electron density calculated theoretically by the GGA-PBE function. Free radical trapping and scavenging experiments exhibited that functional fabrics could produce active substances such as h+,·O2-, and·OH, among which the first two are the main active substances in the reaction. To sum up, this study is an effective attempt based on the existing problems of photocatalysts together with providing some study directions for the development of photocatalytic technology in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.