Abstract

Bimetallic NiAu catalysts have garnered broad interest for a variety of reactions including automotive emissions, selective hydrogenation, selective oxidation, hydrodechlorination, and biomass conversion. However, the bulk immiscibility of the two metals, complicating catalyst synthesis, has limited studies of this bimetallic system. We report a solution-phase synthesis for Ni and bimetallic NiAu heterogeneous catalysts. Using oleylamine as a capping agent, an optimized synthesis for Ni catalysts led to supported particles with a narrow size distribution (4.7 ± 0.4 nm). Gold was added to the Ni nanoparticles via galvanic displacement of Ni in organic solution, the particles were deposited onto commercial alumina, and oleylamine capping agent was removed. The catalytic activity of the bimetallic materials in 1-octyne partial hydrogenation was in between the activity of monometallic Ni and Au catalysts. At high space velocity, the bimetallic catalysts largely maintained the high alkene selectivity associate...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call