Abstract

Control over the size of active metal particles and the structure of catalysts pore system is an essential requirement for the design of supported catalysts. Polymeric templates combined with a suitable metal-oxide precursor enable the synthesis of defined pore systems, whereas colloidal metal particles can provide access to the particle-size control. However, pore template, metal-oxide precursor, and colloidal metal particles combined in one synthesis solution are often not compatible with each other due to aggregation, precipitation, and dissolution processes. We present a new approach to the preparation of supported catalysts that permits the controlled coassembly of preformed colloidal metal nanoparticles, polymeric pore templates, and a metal-oxide precursor from a water-based solution. The synthesis is enabled by establishing under pH-neutral conditions the templating of defined pores using titanium(IV) bis(ammonium lactato) dihydroxide as an unconventional metal-oxide precursor. The presented appro...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call